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1. Introduction

The AdS/CFT correspondence [1] has been explored beyond the supergravity approxi-

mation. Inspired from the solvability of the string theory in the pp-wave background of

AdS5 × S5 [2], it has been proposed that the energies of specific free massive string ex-

cited states can be matched with the perturbative scaling dimensions of gauge invariant

near-BPS operators with large R-charge in the BMN limit for the N = 4 SU(N) super

Yang-Mills (SYM) theory [3]. The BMN result has been reproduced by the semiclassical

quantization of nearly point-like string with large angular momentum along a central circle

in S5 [4]

The energies of various semiclassical extended string configurations with several large

angular momenta in AdS5 × S5 have been shown in [5 – 8] to match with the anomalous

dimensions of the corresponding long SYM non-BPS operators, which can be computed by

using the Bethe ansatz [9] for diagonalization of the dilatation operator [10 – 12], that is

represented by a Hamiltonian of an integrable spin chain.

From the view point of integrability the gauge/string duality has been further con-

firmed by verifying the equivalence between the classical string Bethe equation for the

classical AdS5 × S5 string sigma model and the Bethe equation for the spin chain [13, 14].

Combining the classical string Bethe ansatz and the all-loop gauge theory asymptotic Bethe

ansatz [15], it has been shown that a novel Bethe ansaz, namely, the quantum string Bethe

ansatz for the SU(2) sector has been constructed [16] such that it generates the classical

spinning strings, the λ1/4 strong coupling asymptotics and the 1/J energy corrections of

arbitrary M -impurity BMN states whose special M = 2, 3 cases agree with the results of

direct light-cone gauge quantization of the interacting string theory in the near plane-wave

background [17]. The gauge theory asymptotic Bethe ansatz for the SU(2) sector has been

shown to arise as an approximation to the Hubbard model [18]. The quantum string Bethe

ansatz has been generalized by constructing the S matrices to the other sectors such as
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SL(2), SU(1|1) [19] and the full PSU(2,2|4) [20]. For the SU(1|1) sector the dilatation

operator at one-loop has been shown to coincide with the Hamiltonian of the free lattice

fermion [21]. The S matrices leading to the asymptotic Bethe equations have been inves-

tigated for the SU(1|2) and SU(2|2) sectors [22] and the two-loop dilatation operator for

the SU(1,1|2) sector has been constructed [23].

On the other hand there have been various studies of comparing the quantum world-

sheet corrections to spinning string solutions in AdS5 × S5 with the finite size corrections

to the Bethe equations [24, 25].

The gauge/string duality has been also presented at the level of equations of motion [26]

and at the level of effective action [27] where an interpolating spin chain sigma model action

constructed by taking the continuum limit of the spin chain in the coherent basis for the

SU(2) sector is also reproduced by taking some fast-string limit of the string action. The

latter approach has been extended to the whole SO(6) and its compact subgroups [28 –

30] and non-compact SL(2) [30, 31]. Based on the spin chain sigma model for the SU(2)

sector the 1/J and 1/J2 energy corrections to the plane-wave state and the circular and

folded string states have been computed [32]. The supersymmetric extensions have been

performed for SU(1|3) [33], SU(1,1|1) [34], SU(1,1|2) [35] and SU(2|3) [33, 36]. In [33 –

35] the first-string limit has been taken for certain subsectors of the covariant κ-symmetric

superstring action in AdS5×S5 [37] constructed as a 2d sigma model on the coset superspace

PSU(2,2|4)/[SO(1,4) ×SO(5)], while in [36] it has been taken for a subsector of the light-

cone κ-symmetry gauge fixed superstring action [38] expressed in terms of the light-cone

supercoset coordinates in the SU(3)×U(1) invariant form.

From the superstring sigma model action in AdS5 × S5 expressed in terms of the Z4-

graded current of the PSU(2,2|4)/[SO(1,4)× SO(5)] supercoset [39], the truncations to the

SU(1|1) sector have been performed by choosing a phase-space uniform gauge t = τ, pφ =

J [40] where pφ is the canonical momentum conjugate to the angle variable φ for a central

circle in S5 and a uniform light-cone gauge [41], where the BMN spectrum for fermions

is presented and the 1/J correction to the M -impurity plane-wave state agrees with the

result of [42]. For the former gauge choice the two complex fermions are arranged into a

single world-sheet Dirac fermion so that the reduced action shows a non-trivial 2d Lorentz-

invariant interacting theory of massive Dirac fermion, while for the latter gauge choice the

reduced theory becomes free and the femionic fluctuation spectra over both a point-like

string with no winding numbers and an extended string wound around the φ direction are

computed. For the former truncation to the SU(1|1) sector the exact S-matrix has been

computed to give the Bethe ansatz solution [43].

In ref. [36] the SU(1|1) sector has been extracted from the SU(3)×U(1) invariant

superstring action, where the fermionic action for the quadratic fermionic fluctuation over

the point-like bosonic string background with a large angular momentum becomes a non-

relativistic expansion form of an action for a massive 2d relativistic fermion. In order to

see the effect of the bosonic background on the fermionic fluctuation we will consider the

SU(1|2) sector. We will study the fermionic fluctuation around the non-point-like circular

string background specified by two angular momenta and two winding numbers in S5, and

take the large limit of the total angular momentum. The fermionic action simplified by
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taking the first-string limit will be expressed in an explicitly 2d relativistic manner by

a massive world-sheet Dirac fermion and shown to have the plane-wave spectrum. The

fermionic spectrum for the SU(2|2) sector will be discussed.

2. SU(3) × U(1) invariant superstring action

We consider the superstring in AdS5 × S5 space-time with metric ds2 = e2φdxadxa +

dφdφ + dXMdXM , XMXM = 1 (a = 0, . . . , 3;M = 1, . . . , 6). In terms of the light-

cone coordinates on the PSU(2,2|4)/[SO(1,4)× SO(5)] supercoset the full Lagrangian L =

Lkin + LWZ in the fermionic light-cone κ-symmetry gauge is constructed as [38]

Lkin = −1

2

√
ggµν [2e2φ(∂µx+∂νx

− + ∂µx∂ν x̄) + ∂µφ∂νφ + ∂µXM∂νX
M ]

− i

2

√
ggµνe2φ∂µx+[θA∂νθA + θA∂νθ

A + ηA∂νηA + ηA∂νηA]

−i
√

ggµνe2φ∂µx+XN∂νXMηAρMNA
BηB

+
1

2

√
ggµνe4φ∂µx+∂νx

+[(ηAηA)2 + (XNηAρMNA
BηB)2],

LWZ = εµνe2φ∂µx+XM (ηAρM
AB∂νθB + ηAρMAB∂νθB)

+i
√

2εµνe3φ∂µx+XM (∂ν x̄ηAρMABηB − ∂νxηAρM
ABηB), (2.1)

where gµν (µ = 0, 1) is a world-sheet metric with signature (−,+) and g = − det gµν . The

Poincare coordinates of AdS5 are chosen by

x± =
1√
2
(x3 ± x0), x =

1√
2
(x1 + ix2), x̄ =

1√
2
(x1 − ix2) (2.2)

and the radial direction φ, while S5 is parametrized by a unit 6-vector XM so that the

constraint XMXM = 1 should be imposed with a Lagrange multiplier Λ. This Lagrangian

has manifest SU(4) symmetry where the 4 + 4 complex fermionic fields θA, ηA with A =

1, 2, 3, 4 transform in the fundamental representation of SU(4) and θA = θ†A, ηA = η†A. The

4 × 4 matrices ρM are “off-diagonal” blocks of the SO(6) gamma-matrices in the chiral

representation and ρMN = −ρ[Mρ∗N ]. There exist only quadratic and quartic fermionic

terms which are associated with special symmetries of the AdS5 × S5 background. The

(ηAηA)2 term reflects the curvature of the background, and the (XNηAρMNA
BηB)2 term

is interpreted as the coupling to the R-R 5-form background. The fermionic fields θA are

related to the linearly realized supersymmetry of the super conformal algebra PSU(2,2|4),
and the ηA fields are associated with the non-linearly realized superconformal symmetry.

In ref. [36] the bosonic AdS5 Poincare coordinates are replaced by the global AdS5

ones and in order to choose the conformal gauge for the 2d metric the following ansatz

corresponding to the global AdS5 time t = κτ + · · · where dots indicate possible fermionic

terms, is taken for the bosonic AdS5 fields

eφ = cos κτ, x+ =
tan κτ√

2
, x− = −tan κτ√

2
+ f(τ, σ), x = x̄ = 0. (2.3)
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The φ equation of motion restricts on the allowed fermionic configuration to determine

∂0f , while one of the two conformal constraints determines ∂1f .

In the SU(2|3) sector on the SYM side the gauge invariant operators consist of the 3

chiral complex combinations of 6 scalars on which the SO(6) R-symmetry acts and the two

spinor components of the gluino Weyl fermion which are singlets under the Cartan [U(1)]3

subgroup of SO(6). In order to extract the SU(2|3) sector the 3 chiral bosonic fields Xi are

introduced by Xi ≡ X2i−1 + iX2i, i = 1, 2, 3 and the SU(4) fermions are splitted in 3 + 1

way as ηA ≡ (ηi, η), θA ≡ (θi, θ), i = 1, 2, 3. The two SU(3) singlet fields η ≡ η4, θ ≡ θ4 are

related with the two fermions in the SU(2|3) sector.

The fermionic part of the Lagrangian (2.1) can be expressed in the manifestly SU(3)×
U(1) invariant form through the ansatz (2.3) as LF = L2F +L4F where the quadratic terms

are

L2F =
κ√
2
[iηi∂0ηi + iη̄∂0η + iθi∂0θi + iθ̄∂0θ + εijkη

i∂1θ
jXk − εijkηi∂1θjXk

+ηi∂1θ̄Xi − ηi∂1θXi + ∂1θ
iη̄Xi − ∂1θiηXi

−i(Xi∂0Xj − Xj∂0X
i)ηiη

j − iXi∂0Xi(η
jηj − η̄η)

−i(εijkXj∂0Xkηiη̄ − εijkX
j∂0X

kηηi)] (2.4)

and the quartic terms are

L4F = −
(

κ√
2

)2

[3ηiηiη̄η − 4Xiη
iXjηj η̄η + 4ηiX

iηjXjηkη
k

+2εijkη
iηjXkηlX

lη + 2εijkηiηjXkη
lXlη̄], (2.5)

where Xi = X∗
i , ηi = η†i , θ

i = θ†i , η̄ = η†, θ̄ = θ† and there are no gamma-matrices. The

coupling terms including the σ-derivative in (2.4) originate in the Wess-Zumino part LWZ

of (2.1), while the coupling terms including the τ -derivative in the form X∂0Xηη are due

to the quadratic terms proportional to ηAρMNA
BηB in the kinetic part Lkin of (2.1). The

bosonic part of the Lagrangian (2.1) is also expressed as

LB = −1

2
∂µX∗

i ∂µXi +
1

2
Λ(X∗

i Xi − 1). (2.6)

3. Fermionic fluctuations over a circular string with two equal spins

Since the starting fermionic Lagrangian LF is expressed in the manifestly SU(3)×U(1)

form, the truncations to the SU(2|3) and SU(1|1) sectors are facilitated [36]. There are

two possible consistent truncations A and B with the bosonic fields from AdS3 × S3 and

fermions suitably chosen as

A : (X1,X2; θ, θ3, η1, η2) 6= 0, (x,X3; η, η3, θ1, θ2) = 0, (3.1)

or, alternatively,

B : (X1,X2; η, η3, θ1, θ2) 6= 0, (x,X3; θ, θ3, η1, η2) = 0. (3.2)
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This “SU(1|2)” string theory sector is considered to be related with the SU(1|2) gauge

theory sector. Further restricting to S1 inside S5 we have the following two truncations

that are associated with the SU(1|1) gauge theory sector

A′ : (X1; θ, η1) 6= 0, (3.3)

B′ : (X1; η, θ1) 6= 0, (3.4)

where the other bosonic and fermionic fields are switched off respectively. Some solitonic

classical solutions for these subsectors were constructed to include the fermionic semi-

classical contribution as the generalization of the bosonic spinning string solutions [36].

For the “SU(1|1)” string theory sectors A’ and B’ the non-relativistic actions of BMN-

type massive fermionic fluctuations were constructed from the SU(3)×U(1) invariant La-

grangian (2.4), (2.5) and (2.6) in the point-like bosonic string background by integrating

extra fermions η1 and θ1 respectively.

As an extended string background we prepare a circular string solution specified by

the winding number m with large two equal spins T1 = T2 = T /2, which is expressed as

X1 =
1√
2
eiωτ−imσ , X2 =

1√
2
eiωτ+imσ (3.5)

with ω = T [7]. Its energy is characterized by E2 = κ2 = T 2 +m2. This string background

is determined from the leading order relations of the conformal constraints where there are

no fermionic semiclassical contributions. We consider the fermionic excitation representing

a small perturbation over the circular bosonic string background. This configuration is

mapped to the long SYM operator which is composed of the large and same number of

two comlex scalar fields and only a few fermions. It is convenient to rescale the fermionic

fields as
(

ηi

ηi

)

→ α

(

ηi

ηi

)

,

(

η

η̄

)

→ α

(

η

η̄

)

,

(

θi

θi

)

→ α

(

θi

θi

)

,

(

θ

θ̄

)

→ α

(

θ

θ̄

)

(3.6)

with α = (
√

2/κ)1/2 in order to absorb the overall factors κ/
√

2 in L2F and (κ/
√

2)2 in

L4F .

Here we start to consider the case A. Plugging the bosonic background (3.5) into the

quadratic Lagrangian (2.4) with κ/
√

2 = 1 we have

L2F = i

2
∑

i=1

ηi∂0ηi + iθ3∂0θ3 + iθ̄∂0θ

−e−iωτ

√
2

(e−imση1 − eimση2)∂1θ
3 +

eiωτ

√
2

(eimση1 − e−imση2)∂1θ3

+
eiωτ

√
2

(e−imση1 + eimση2)∂1θ̄ − e−iωτ

√
2

(eimση1 + e−imση2)∂1θ

+ω(e2imση1η
2 + e−2imση2η

1). (3.7)

The quartic Lagrangian (2.5) becomes

L4F = −4η1η
1η2η

2. (3.8)
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In view of the terms including the σ-derivative in (3.7) which are associated with the

Wess-Zumino part we introduce a change of fermionic variables

(

η−
η+

)

=
1√
2

(

eimσ −e−imσ

eimσ e−imσ

)(

η1

η2

)

, (3.9)

which is an SU(2)-type rotation. We use ω = T and the inverse relation of (3.9) to

rewrite (3.7) as

L2F = iη+∂0η+ + iθ̄∂0θ + eiT τη+∂1θ̄ − e−iT τη+∂1θ − T η+η+

+iη−∂0η− + iθ3∂0θ3 − e−iT τη−∂1θ
3 + eiT τη−∂1θ3 + T η−η−, (3.10)

where η+ = η†+, η− = η†− and the σ-dependent exponential phase factors e±2imσ in the

mixed terms in (3.7) have been eliminated. Under the SU(2)-type rotation (3.9) the kinetic

terms remain the canonical forms. In the expression L2F (3.7) the fermionic field η1 is

coupled with η2, and η2 with η1, while the transformed one (3.10) is simplified such that

η+ is separated from η−. The quartic expression (3.8) is changed into

L4F = −4η+η+η−η−. (3.11)

Making the scalings of θ and θ3 as θ → eiT τθ, θ3 → e−iT τθ3 to remove the time-dependent

exponential phase factors in the mixed terms, we have a symmetric expression

L2F = iη+∂0η+ + iθ̄∂0θ + η+∂1θ̄ − η+∂1θ − T (θ̄θ + η+η+)

+iη−∂0η− + iθ3∂0θ3 − (η−∂1θ
3 − η−∂1θ3) + T (θ3θ3 + η−η−). (3.12)

Let us turn to the case B. The quadratic Lagrangian (2.4) in the bosonic back-

ground (3.5) is written by

L2F = i

2
∑

i=1

θi∂0θi + iη3∂0η3 + iη̄∂0η

+
e−iωτ

√
2

η3(e−imσ∂1θ
1 − eimσ∂1θ

2) − eiωτ

√
2

η3(e
imσ∂1θ1 − e−imσ∂1θ2)

+
eiωτ

√
2

(e−imσ∂1θ
1 + eimσ∂1θ

2)η̄ − e−iωτ

√
2

(eimσ∂1θ1 + e−imσ∂1θ2)η

+ω(η3η3 − η̄η), (3.13)

while the quartic one (2.5) is

L4F = −3η3η3η̄η. (3.14)

The expression (3.13) also suggests the following SU(2)-type rotation

(

θ−
θ+

)

=
1√
2

(

eimσ −e−imσ

eimσ e−imσ

)(

θ1

θ2

)

, (3.15)
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which corresponds to (3.9). This change of variables leads to an expression with no σ-

dependent exponential factors

L2F = iθ+∂0θ+ + iη̄∂0η + eiT τ∂1θ
+η̄ − e−iT τ∂1θ+η − T η̄η

+iθ−∂0θ− + iη3∂0η3 + e−iT τη3∂1θ
− − eiT τη3∂1θ− + T η3η3

+im(e−iT τη3θ+ + eiT τη3θ+ + eiT τθ−η̄ + e−iT τθ−η), (3.16)

where θ+ = θ†+, θ− = θ†− and the winding-number dependence appears, which is compared

with the case A. Under the shifts of θ− → e−iT τθ−, θ+ → eiT τθ+ the expression (3.16)

becomes

L2F = iθ+∂0θ+ + iη̄∂0η − (η̄∂1θ
+ − η∂1θ+) − T (η̄η + θ+θ+)

+iθ−∂0θ− + iη3∂0η3 + η3∂1θ
− − η3∂1θ− + T (η3η3 + θ−θ−)

+im(e−2iT τη3θ+ + e2iT τη3θ+ + e2iT τθ−η̄ + e−2iT τθ−η). (3.17)

The winding-number dependent terms have a large time-dependent phase in the large limit

of the total angular momentum so that they oscillate and average to zero as in [26, 28].

Therefore in the large T limit the m-dependent terms can be ignored. The resulting

Lagrangian shows a simple separated expression in the same way as (3.12) of the case A.

Now for the case A we further set η− and θ3 to zero in (3.12) and (3.11) in order to

obtain a fermionic Lagrangian with only two complex fermions η+, θ

LF = iη+∂0η+ + iθ̄∂0θ + η+∂1θ̄ − η+∂1θ − T (θ̄θ + η+η+). (3.18)

Introducing a two-component complex (Dirac) spinor ψ by combining the two complex

fermions as

ψ ≡
(

ψ1

ψ2

)

=

(

η+

θ̄

)

or

(

θ

η+

)

(3.19)

we rewrite the fermionic Lagrangian (3.18) as

LF = i(ψ†
1∂0ψ1 + ψ†

2∂0ψ2) + ψ†
1∂1ψ2 − ψ†

2∂1ψ1 − T (ψ†
1ψ1 − ψ†

2ψ2). (3.20)

Further it takes a Lorentz-invariant expression for a Dirac fermion with mass T on the flat

two-dimensional world-sheet

LF = iψ̄ρµ∂µψ + T ψ̄ψ (3.21)

with ρ0 = −σ3, ρ1 = iσ1 and ψ̄ = ψ†ρ0. This relativistic Lagrangian for the SU(1|2) sector

is compared with the non-relativistic quadratic fluctuation Lagrangian of one complex

fermion for the SU(1|1) sector produced by integrating an extra fermion in ref. [36].

In the fermionic action SF =
√

λ
2π

∫

dτdσLF the overall factor
√

λ can be removed by

the rescalings of

ψα → ψα

λ1/4
(α = 1, 2). (3.22)

Moreover, the global AdS5 time specified by t = T τ in the large T limit yields

SF =

∫

dt

∫

dσ

2π

[

i(ψ†
1∂0ψ1 + ψ†

2∂0ψ2) +
√

λ̃(ψ†
1∂1ψ2 − ψ†

2∂1ψ1) − (ψ†
1ψ1 − ψ†

2ψ2)
]

,

(3.23)
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where λ̃ = 1/T 2 = λ/J2 is the effective BMN coupling constant. To create string states

dual to the gauge theory operators in the SU(1|2) sector we need to choose a proper

representation of the anti-commutation relations for fermions. The fermions are expanded

in the Fourier modes

ψα =
∞
∑

n=−∞
einσψα,n, ψ†

α =
∞
∑

n=−∞
e−inσψ†

α,n (3.24)

by using the following creation and annihilation operators

(

ψ1n

ψ2n

)

=

(

fn gn

gn fn

)(

a−n
b+
n

)

,

(

ψ†
1n

ψ†
2n

)

=

(

fn −gn

−gn fn

)(

a+
n

b−n

)

, (3.25)

where the functions fn, gn are defined by

fn =

√

1

2
+

1

2ωn
, gn =

i
√

λ̃n

1 + ωn

√

1

2
+

1

2ωn
(3.26)

with ωn =
√

1 + λ̃n2. The rotation matrices in (3.25) also take SU(2) forms. The substi-

tution of (3.24) into the action (3.23) yields

SF =

∫

dt
∞
∑

n=−∞
[i(a+

n ∂0a
−
n + b+

n ∂0b
−
n ) − ωn(a+

n a−n + b+
n b−n )], (3.27)

which shows that (a−, a+) and (b−, b+) are pairs of canonically conjugate fermionic oper-

ators and ωn is the energy of a plane-wave state. The long SYM operators in the SU(1|2)
sector are dual to states obtained by acting operators a†n on the vacuum and switching

off the b oscillators. Thus in the case of the non-point-like circular string background

specified by the non-zero winding numbers we have produced the BMN-type plane-wave

Hamiltonian for the SU(1|2) sector, as a collection of free massive fermionic oscillators.

The Lagrangian (3.27) shows the similar oscillator expression to the quadratic plane-wave

Lagrangian for the SU(1|1) sector in ref. [40], where the superstring Hamiltonian with the

near-plane wave correction is constructed by using the uniform gauge and parametrizing

the supercoset element in the different way from the one used in [38].

For the case B switching off θ− and η3 for (3.17) and (3.14) we have a reduced La-

grangian

LF = iθ+∂0θ+ + iη̄∂0η − (η̄∂1θ
+ − η∂1θ+) − T (η̄η + θ+θ+). (3.28)

In terms of the two complex fermions ψ1, ψ2 defined by

ψ ≡
(

ψ1

ψ2

)

=

(

θ+

η̄

)

or

(

η

θ+

)

(3.29)

the Lagrangian is expressed as

LF = i(ψ†
1∂0ψ1 + ψ†

2∂0ψ2) − ψ†
1∂1ψ2 + ψ†

2∂1ψ1 − T (ψ†
1ψ1 − ψ†

2ψ2). (3.30)
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If we rename the world-sheet coordinate σ as σ → −σ the Lagrangian again takes the

same relativistic expression for the Dirac fermion ψ as (3.21). The fermions ψα, ψ†
α are

expanded in the Fourier modes in the same way as (3.24) and (3.25), where fn and gn are

now given by

fn =

√

1

2
+

1

2ωn
, gn =

−i
√

λ̃n

1 + ωn

√

1

2
+

1

2ωn
, ωn =

√

1 + λ̃n2, (3.31)

which are obtained from (3.26) by n → −n. The substitution of this mode expansion into

the action for (3.30) leads to the same plane-wave action as (3.27).

4. Fermionic fluctuations over a circular string with two unqual spins

Let us consider a circular string background with two unequal spins J1, J2 and winding

numbers m1,m2 [7]

Xi = aie
iωiτ+imiσ, ω2

i = m2
i + ν2,

2
∑

i=1

a2
i = 1, (4.1)

whose classical energy E and Ti = ωia
2
i (i = 1, 2) are characterized by

E2 = 2
2

∑

i=1

ωiTi − ν2,
2

∑

i=1

miTi = 0. (4.2)

For the case A we substitute the bosonic background solution (4.1) into the fermionic

Lagrangian (2.4) and (2.5) with κ/
√

2 = 1 to have

L2F = i
2

∑

i=1

ηi∂0ηi + iθ3∂0θ3 + iθ̄∂0θ

+(a1e
−iδ1η2 − a2e

−iδ2η1)∂1θ
3 − (a1e

iδ1η2 − a2e
iδ2η1)∂1θ3

+(a1e
iδ1η1 + a2e

iδ2η2)∂1θ̄ − (a1e
−iδ1η1 + a2e

−iδ2η2)∂1θ

+(ω1a
2
1 − ω2a

2
2)(η1η

1 − η2η
2)

+a1a2(ω1 + ω2)(e
−iδ1+iδ2η1η

2 + eiδ1−iδ2η2η
1),

L4F = −4η1η
1η2η

2, (4.3)

where δi = ωiτ + miσ (i = 1, 2).

Performing the following SU(2)-type rotation of fermionic variables suggested from the

terms including the σ-derivative in (4.3)
(

η−
η+

)

=

(

a2e
iδ2 −a1e

iδ1

a1e
−iδ1 a2e

−iδ2

)(

η1

η2

)

, (4.4)

we rewrite the Lagrangian (4.3) as

L2F = iη+∂0η+ + iη−∂0η− + iθ3∂0θ3 + iθ̄∂0θ

−η−∂1θ
3 + η−∂1θ3 − η+∂1θ̄ − η+∂1θ + 2(ω1a

2
1 + ω2a

2
2)(η+η+ − η−η−)

+2a1a2(ω1 − ω2)(e
i(δ1+δ2)η+η− + e−i(δ1+δ2)η−η+),

L4F = −4η+η+η−η−. (4.5)
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Under the redefinition the coupling terms have a phase and the mass terms are arranged to

have a suitable mass parameter ω1a
2
1 + ω2a

2
2 = T1 + T2 = T . The large angular momentum

expansion for (4.1) gives ν2 = T 2 − ∑2
i=1 m2

i Ti/T + · · · and

ω1 = T +
(m2

1 − m2
2)T2

2T 2
+ · · · , ω2 = T − (m2

1 − m2
2)T1

2T 2
+ · · · . (4.6)

For the large total angular momentum T that means large ωi (i = 1, 2), the coupling terms

with the time-dependent phase can be ignored since they average to zero. Then we have a

simple diagonalized expression

L2F = iη+∂0η+ + iθ̄∂0θ + η+∂1θ̄ − η+∂1θ − 2T η+η+

+iη−∂0η− + iθ3∂0θ3 − η−∂1θ
3 + η−∂1θ3 + 2T η−η−, (4.7)

which is compared with (3.10). Here making the rescalings of fermions η+ → e−iT τη+, η− →
eiT τη−, we observe that L4F is not changed and L2F is transformed into the same expression

as (3.10). The rescalings combine with the τ - and σ-dependent rotation (4.4) into an SU(2)-

type rotation
(

η−
η+

)

=

(

a2e
−iT τ+iδ2 −a1e

−iT τ+iδ1

a1e
iT τ−iδ1 a2e

iT τ−iδ2

)(

η1

η2

)

, (4.8)

which reduces to the previous σ-dependent rotation (3.9) for the equal spin case ω1 =

ω2 = T ,m1 = −m2 = −m,a1 = a2 = 1/
√

2. Therefore the compensating redefinitions

of θ → eiT τθ, θ3 → e−iT τθ3 for the transformed L2F yield the same symmetric separated

expression as (3.12). Thus for the case A reduced with η− = θ3 = 0 in the circular

string background with two unequal spins the quantum plane-wave spectrum (3.27) can

be reproduced again through the suitable renaming of the fermions. The fermionic string

configuration with the a oscillator only is considered to correpond to the long SYM operator

which consists of the large and different number of two complex scalar fields and a few

fermions in the SU(1|2) sector.

Now we turn our attention to the case B. The substitution of circular string solu-

tion (4.1) into the fermionic Lagrangian (2.4) and (2.5) with κ/
√

2 = 1 gives again (3.14)

for L4F and an involved expression for L2F which suggests the following particular choice

of field redefinitions
(

θ−
θ+

)

=

(

a2e
iδ2 −a1e

iδ1

a1e
−iδ1 a2e

−iδ2

)(

θ1

θ2

)

, (4.9)

which has the same transformation matrix as (4.4) amd resembles (3.15). The inversion

of (4.9) leads to the quadratic Lagrangian

L2F = iθ+∂0θ+ + iη̄∂0η − (η̄∂1θ
+ − η∂1θ+) − T (η̄η + θ+θ+) + ima(η̄θ+ + ηθ+)

+iθ−∂0θ− + iη3∂0η3 + η3∂1θ
− − η3∂1θ− + T (η3η3 + θ−θ−) + ima(η

3θ− + η3θ−)

−a1a2(ω1 − ω2)(e
−i(δ1+δ2)θ+θ− + ei(δ1+δ2)θ−θ+)

+ia1a2(m1 − m2)[e
i(δ1+δ2)(η̄θ− − η3θ+) + e−i(δ1+δ2)(ηθ− − η3θ+)]

−a1a2(ω1 − ω2)(e
−i(δ1+δ2)ηη3 + ei(δ1+δ2)η3η̄) (4.10)

– 10 –



J
H
E
P
0
8
(
2
0
0
6
)
0
2
8

with ma = m1a
2
1 + m2a

2
2 which is compared with T = ω1a

2
1 + ω2a

2
2. It is confirmed that

this expression indeed reduces to (3.17) for the equal spin case. In this case the SU(2)-type

rotation (4.9) can be expressed as
(

θ−e−iT τ

θ+e−iT τ

)

=
1√
2

(

eimσ −e−imσ

eimσ e−imσ

)(

θ1

θ2

)

, (4.11)

which is just the product of the previous σ-dependent rotation (3.15) and the succeeding

shifts of θ− → e−iT τθ−, θ+ → eiT τθ+. The quartic Lagrangian L4F remains the same

expression as (3.14). Taking the fast-string limit of the quadratic Lagrangian L2F (4.10)

we see that the involved coupling terms with the exponential phase factors e±i(δ1+δ2) average

to zero. In the resulting L2F the fermionic system (θ+, η) is separated from the fermionic

one (θ−, η3), and each system has the non-zero winding-number dependent terms with a

coefficient ma, which vanish for the equal spin case.

Here putting θ− = η3 = 0 for the reduction which keeps only two complex fermions

θ+, η, we have

LF = iθ+∂0θ+ + iη̄∂0η − (η̄∂1θ
+ − η∂1θ+) − T (η̄η + θ+θ+) + ima(η̄θ+ + ηθ+). (4.12)

Through the renaming of fermionic fields in the same way as (3.29) LF becomes

LF = i(ψ†
1∂0ψ1 + ψ†

2∂0ψ2)− ψ†
1(∂1 ± ima)ψ2 + ψ†

2(∂1 ± ima)ψ1 − T (ψ†
1ψ1 −ψ†

2ψ2), (4.13)

which is expressed through the renaming of σ → −σ as

LF = iψ̄ρµ∂µψ + T ψ̄ψ ± maψ̄ρ1ψ, (4.14)

where + corresponds to the one choice ψ =
(

θ+

η̄

)

and − to the other choice ψ =
( η
θ+

)

, and

the bosonic background dependence is specified by T and ma. We substitute the mode

expansion of ψα, ψ†
α, (3.24) with (3.25) into the fermionic action for (4.13). If the following

parametrization is chosen

fn =

√

1

2
+

1

2ωn
, gn =

−i
√

λ̃(n ± ma)

1 + ωn

√

1

2
+

1

2ωn
, ωn =

√

1 + λ̃(n ± ma)2,

(4.15)

the same plane-wave action as (3.27) is derived. For the two unequal spin case we have

observed that there seems a difference for the energy spectrum ωn of each mode between

the reduced A system (η+, θ) and the reduced B system (θ+, η). The ωn for the reduced

B system is specified with the mode number n shifted by the winding-number dependent

factor ma. However, using (4.6) we estimate ma in the λ̃ = 1/T 2 expansion as

ma =
m1T1

ω1
+

m2T2

ω2
=

m1T1 + m2T2

T − 1

T 2

(m1 + m2)(m1 − m2)
2T1T2

2T 2
+ · · · , (4.16)

whose first leading term is zero through (4.2). To the leading order in λ̃, that is, in the

plane-wave limit both the reduced A system and the reduced B system show the same

energy spectrum as Fock-space states for the fermionic fluctuation around the circular

string background with two unequal spins.
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For the “SU(2|2)” string theory sector we make a system by combining two cases A

and B, that is, putting X3 = 0 only in the fermionic Lagrangian L2F (2.4) and L4F (2.5),

and take the large total angular momentum limit for the sum of the quadratic fermionic

Lagrangians (4.7) and (4.10). The quartic Lagrangian becomes L4F = η+η+η̄η when the

reduction specified by both η− = θ3 = 0 and η3 = θ− = 0 is taken. However, owing to

the rescalings of fermionic fields by 1/λ1/4 such as (3.22) the quartic action becomes of the

order 1/
√

λ. In the leading large
√

λ approximation near the classical bosonic solution with

two spins we need to know only the quadratic part. The reduced quadratic action is shown

to give the plane-wave spectra for the two fermions in the SU(2|2) sector by switching off

the two relevant b oscillators.

5. Conclusion

From the SU(3)×U(1) invariant superstring action in AdS5 × S5 which is produced by

choosing the conformal gauge for the κ-symmetry gauge fixed superstring action, we have

constructed the truncated action for the SU(1|2) sector which describes the fermionic fluc-

tuations over a circular string background with two angular momenta and two winding

numbers.

The suitable SU(2)-type τ - and σ-dependent rotation of fermionic fields and the first-

string limit simplify the starting superstring action such that the involved coupling terms

can be ignored and there remain two separated massive fermion systems. The mass terms

have been characterized by the total angular momentum that arises from an adequate

combination of the coupling terms between the fermionic fluctuations and the bosonic

background fields. We have observed that the appropriate renamings of fermionic fields lead

to a Lorentz-invariant action for a massive 2d Dirac fermion and its plane-wave spectrum

for the SU(1|2) sector. The BMN-type spectrum has been derived even for the non-point-

like string background with the non-zero winding numbers. For the truncated systems A

and B for the two unequal spin case there appears a difference in the plane-wave spectra,

but the difference specified by the winding numbers can be neglected to the leading order in

λ̃. Combining the two truncated systems we have also constructed the leading plane-wave

action for the SU(2|2) sector.

In the second and third references of [5] starting from the quadratic part of the covari-

ant κ-symmetric superstring action [37], all the fermionic fluctuations over the multi-spin

circular string solutions with three spins (J1 = J2 = J ′, J3 = J) and two equal spins

(J ′, J = 0) have been computed, while we have started from the full expression of the

light-cone κ-symmetry gauge fixed superstring action [38] and extracted the spectrum of

the truncated fermionic fluctuations in the SU(1|2) sector.

Recently in [44] in the uniform light-cone gauge the bosonic and fermionic quantum

fluctuation spectra have been constructed in the near plane-wave limit for the SU(1|2)
and SU(2|3) sectors, whose string configuration with one large angular momentum and no

winding numbers is dual to the long SYM operator with a few bosonic impurity W fields and

a few fermionic fields in a large number of bosonic Z fields, while our string configuration

with two large angular momenta and two winding numbers for the SU(1|2) and SU(2|2)
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sectors is dual to the long SYM operator with a large number of bosonic impurity W fields

and a few fermionic fields in a large number of bosonic Z fields. In spite of such differences

for the bosonic backgrounds and the gauge choices, both fermionic leading spectra show

the same BMN-type behavior in the limit of the large angular momenta.
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